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SUMMARY 
We present a new surface-intrinsic linear form for the treatment of normal and tangential surface tension 
boundary conditions in C '-geometry variational discretizations of viscous incompressible free-surface flows 
in three space dimensions. The new approach is illustrated by a finite (spectral) element unsteady 
Navier-Stokes analysis of the stability of a falling liquid film. 
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1. INTRODUCTION 

Multifluid and free-surface flows with surface tension play an important role in a wide variety of 
engineering and natural systems. Examples of ubiquitous multifluid phenomena include the flow 
of bubbles and droplets,' the evolution of free and interfacial surface waves2 and multiphase heat 
t r an~fe r .~  The numerical solution of these difficult non-linear free-boundary problems is increas- 
ingly being addressed by front-tracking finite element finite element discretizations 
are attractive not only due to their geometric flexibility but also due to their variational origin. In 
particular, the variational treatment of divergence-of-flux physical laws reduces the continuity 
requirements on the solution space and naturally generates complex flux boundary conditions. In 
this paper we exploit this variational advantage in the treatment of surface tension boundary 
conditions in three space dimensions. 

Most work to date on three-dimensional surface tension problems considers effectively inviscid 
static situations (the Young-Laplace equation), in which a variational form based on the 
divergence of the surface normal is used to generate the proper pressure jump across the free 
~ur face .~  This variational form has the important advantages of lowering the order of derivatives 
on geometric factors and of naturally generating contact angle boundary conditions. However, 
the divergence of the surface normal method also has several disadvantages: the variational form 
generates the curvature, not the curvature-normal product required in viscous analysis; the 
variational form does not generate the tangential surface tension boundary condition; the method 
requires a global rather than a surface-intrinsic co-ordinate system. 
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We present here a new linear form for surface tension which eliminates the problems associated 
with the divergence of the surface normal approach. The new method is based on the strong-form 
surface Laplacian for curvature described in References 10 and 11 and represents an extension to 
three space dimensions and variable surface tension of Ruschak’s’’ variational treatment of two- 
dimensional surface tension problems. We present the new form in Section 2, an example of its 
application in Section 3 and brief conclusions in Section 4. 

2. FORMULATION 

We consider viscous unsteady incompressible flow of a Newtonian fluid in a three-dimensional 
time-dependent domain R. The domain boundary aR is decomposed as aR = aR, u aR,, with 
Dirichlet no-slip boundary conditions imposed on aRo and surface tension traction boundary 
 condition^'^. l4 imposed on 8R,. For the current formulation we further require that 8R, be 
either closed (e.g. a bubble, as shown in Figure l(a)) or periodic (e.g. a wave train, as shown in 
Figure l(b)). The governing equations are then 
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Figure 1. Traction surfaces are considered either (a) closed or (b) periodic 
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where ui is the velocity, p is the pressure (relative to zero ambient),fi’ is the body force, p is the 
density, p is the viscosity and 6 ,  (or 6;) is the Kronecker delta symbol. The following quantities 
are defined on the free surface da,: g, the surface tension coefficient, N i ,  the outward unit normal; 
t i ,  any tangent vector; and K ,  twice the mean curvature. 

We shall use notation and conventions: italic indices range from 1 to 3; a subscript indicia1 
comma denotes derivative (e.g. ui, = aui /8t ,  ui , i=  d u i / a x j ) ;  and repeated italic indices are summed 
from 1 to 3 (e.g. ui, = u l ,  + u2,  + uj, 3).  In order to avoid subscript proliferation, we shall on 
occasion use Gibbs notation, with ui=u and uiui=u*v. Since equation (1) is in reference to a 
Cartesian co-ordinate system, we need not distinguish between covariant and contravariant 
components of vectors and tensors; this will not be the case for the surface-intrinsic quantities 
defined below. Note that since o is defined only on dR, and not in R, o , ~  is undefined; (tia,i) in 
equation (le) must therefore be interpreted as the surface gradient of the surface tension on an,. 

Find (ui, p), u i € H ; ( n )  and P E  LZ(R), such 
that 

The variational form of equation (1) is given 

{pui(ui,, +ujui, j ) + u i ,  j [ -  ~ 6 ~ ~ + p ( u ~ , ~ + u ~ , ~ ) ] - v ~ f i ’ }  dV-I,(ui)=O VU,EH;(R), (2a) 

In qui,i dV=O Vq€L2(R), (2b) 

where ui and q are test functions, LZ(R) is the space of functions which are square integrable, and 
HA(R) is the space of functions which are in L2(Q), whose first derivatives are in L2(R) and which 
vanish on dR,.16 In the remainder of this paper we shall focus our attention on the definition and 
interpretation of I,, the ‘linear’ form corresponding to natural imposition of the stress boundary 
conditions (Id) and (le). 

To begin, we assume that the surface 80, can be represented as the sum of K, non-overlapping 
elemental surfaces Fk): 

where superscript ( k )  refers to a surface element, with no summation convention implied. The rn 
are in turn represented as smooth elemental mappings from A(k): 

xi 1 p*) = XjQ( P), P E Aa, (4) 

where the A(k) are local reference surfaces (e.g. triangles or squares) defined by the surface-intrinsic 
co-ordinates ra. All Greek indices will refer to surface co-ordinates with range and summation 
from 1 to 2. The surface decomposition is shown in Figure 2. 

We next recall the following standard definitions from differential geometry: l 7  
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Figure 2. Description of the free surface in terms of elemental surfaces r(*] represented as mappings X") from 
reference surfaces A(k1 

Here gik) and gu(k) are the covariant and contravariant base vectors respectively, g$ and guBck) are 
the covariant and contravariant metric tensors respectively and g(k) is the Jacobian of the 
mapping given by equation(4). Equation (6) is the formula of Weatherburn," also found in 
Reference 1 1, for the curvature-normal product expressed as a surface Laplacian of X"); a related 
formula is used by Bornside" in the finite element treatment of an axisymmetric free-surface flow. 

We can now define the 'new' linear form Zu(ui): 
K- r 

where ij'i")= ui( A(t) and dA =g")dr'dr2. To interpret this form, we perform integration by parts on a 
surface-elemental basis, arriving at 

where y(k)=dr(k)  and dnU=@ drs, with E$) the permutation tensor (&ik! =eikl =0, ~(:3 = -@ 
= g ( k ) ) .  The last term follows from the surface divergence theorem.'' If we now assume that the 
surface an, is C' and recall our restriction that 80, be closed (see Figure l), the sum of the 
integrals around the vanishes. It can then be seen that the two remaining terms in equation (8) 
are precisely the integrals required for weak imposition of boundary conditions (Id) and (le) in 
the variational statement (2a). Thus the single linear form (7) automatically generates both the 
normal and tangential ('Marangoni') boundary conditions required for viscous analysis. 

We assumed a C '-surface in the preceding analysis only to identify the relevant boundary 
terms in equation (8). In fact, if we expand our geometry space to include Co-surfaces, equa- 
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tion (7) is still well defined and the resulting non-zero boundary integrals over y(k)  in equation (8) 
are precisely the weak C '-conditions (on jumps in ag4(k)g(k)) required to ensure a meaningful 
solution. The implies that the form (7) is appropriate in standard Co-geometry finite element 
discretizations of equation (2); for example, we can identify the ra in equation (4) as the local co- 
ordinate system in the element surface defined by A('), and the mapping Xik)  as an elemental 
isoparametric transformation. The formulation is entirely surface-intrinsic, with no need to 
reference global co-ordinates or locally orthogonal systems. 

3. NUMERICAL SIMULATION 

We present below a brief description of the numerical approach used in the simulatjon of free- 
surface flow, followed by a linear stability analysis of an axisymmetric falling viscous film 
obtained by numerical solution of the time-dependent Navier-Stokes equations (1). 

Numerical approach 

Our numerical approach' is based upon: the variational form (2) and surface tension form (7); 
spectral element spatial discreti~ation;'~* 2o arbitrary Lagrangian-Eulerian description of the 
time-dependent domain;', front tracking of the free surface by surface-intrinsic isoparametric 
co-ordinates; semi-implicit time-stepping procedures;' and preconditioned conjugate gradient 
solution of the fully discrete equations.'" 22 

In the spectral element discretization the computational domain is subdivided into macro- 
elements and the field variables are approximated by high-order tensor-product polynomial 
expansions within each macroelement. Variational projection operators and Gauss-type 
numerical quadratures are used to generate the discrete equations. Convergence is achieved by 
increasing the order of the polynomial while keeping the number of macroelements fixed. Spectral 
element methods are optimal in the sense that the approximation error is a multiplicative 
constant from the best fit in the approximating polynomial subspace.20 

In the arbitrary Lagrangian-Eulerian (ALE) description the time evolution of the domain 
geometry is governed by a mesh velocity associated with each material point in the domain.* This 
mesh velocity is independent of the fluid velocity except on the free surface, where the kinematic 
condition requires that the normal mesh velocity and the normal fluid velocity coincide. Elliptic 
operators such as the Laplacian or elastostatic equations can be used effectively to extend the 
mesh velocity into the interior domain such that mesh distortion is minimized. Using the ALE 
description, consistent treatment of the field variables and their reference configuration can be 
incorporated, and the time evolution of free-surface position can be accurately tracked. 

The issues of temporal discretization and solution algorithm are clearly closely coupled. In the 
semi-implicit approach8 those components of the equations (the pressure and viscous elliptic 
operators) amenable to fast iterative solution such as preconditioned conjugate gradient itera- 
tionZ3 are treated implicitly, and those components (the convection operator and the coupling of 
all operators with time-dependent geometry) not readily amenable to fast iterative solution are 
treated explicitly. The selection of maximally stable high-order semi-implicit time integration 
schemes is described in detail in Reference 22. 

Sample analysis 

The axisymmetric film, assumed to be infinitely long in the axial (xl) direction, is defined by the 
inner wall radius a, the average film radius b, the average film thickness h = b - a, the Reynolds 
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number R = p U o h / p  and the Weber number W = a / p h U i .  The scaling velocity U, is given by 

where #=a/b and g is the gravitational acceleration. The density p, viscosity p and surface 
tension u are all taken to be constant. The geometry and film parameters are shown in Figure 3. 

One solution to the governing equations (1) for all R and Wis given by a j a t  free surface with 

- 4 ' - (~ , /b )~ -2  ln(a/x,) 
U, = 42-2 l n 4 -  1 UO 9 

- 

u, = 0, (lob) 

P=O, (104 

where x2 is the radial co-ordinate. In a temporal linear stability analysis we perturb the free 
surface and equilibrium solution (10) by a sinusoidal disturbance of axial wavelength 1 and 
amplitude q, q e h ,  and determine whether such a disturbance grows or decays in time. The 
growth rate of the least stable disturbance for all wavelengths nL (n a positive integer) is 
denoted y,-all quantities will behave as eYr' for sufficiently long times. 

For our sample stability analysis we take the film parameters as a= 1, b=2, U,= 1, A= 57r, 
W =  1 and R =  1. We include one wavelength of the film in the computational domain and 
impose periodic boundary conditions in the axial direction. In order to demonstrate the 
three-dimensional capability of the formulation, we employ 30 sixth-order three-dimensional 
spectral elements to represent the film; furthermore, a 45" twist is applied to the mesh to ensure 
that the surface-elemental co-ordinates are non-orthogonal. The resulting spectral element 
decomposition is shown in Figure 4. 

We solve the fully non-linear Navier-Stokes equations from initial conditions comprising the 
equilibrium flow (10) and a small (2%) free-surface perturbation. The growth rate yr is then 
evaluated from the time history of the L2-norm of the perturbation velocities as shown in 
Figure 5. The three-dimensional spectral element calculation predicts a growth rate yr = 0.0484; 

I PERIODIC 

R = 1.00 
w = 1.00 
a = l . W  
h = 1.00 
x = sr 

PERIODIC & 
Figure 3. Geometry and flow parameters for linear stability analysis of an axisymmetric falling film 
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FREE SURFACE WALL 
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, SPECTRAL ELEMENT 

Figure 4. Three-dimensional Legendre spectral element mesh for linear stability analysis of an axisymmetric falling film 
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Figure 5. Legendre spectral element prediction of the growth rate of an unstable perturbation to an axisymmetric falling 
film 
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this result is in good agreement with the Orr-Sommerfeld solution yr=O-0476 given by Solorio 
and Sen,24 as well as the axisymmetric spectral element solution yr =00485 given by HO.’~ 

4. CONCLUSIONS 

A new variational linear form is presented for the treatment of general surface tension boundary 
conditions in three-dimensional incompressible viscous free-surface flows. This new form has the 
following important advantages: first, it provides a consistent treatment for variable surface 
tension; secondly, it automatically generates (in a weak sense) natural conditions for C’- 
continuity of the free-surface geometry; and lastly, it is entirely surface-intrinsic and thus well 
suited for discretization using finite element techniques. Future work will include extension of the 
formulation to open domains involving contact angle boundary conditions. 
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